552 research outputs found

    The DEAD-box RNA Helicase DDX6 is Required for Efficient Encapsidation of a Retroviral Genome

    Get PDF
    Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging

    A Curated Database of miRNA Mediated Feed-Forward Loops Involving MYC as Master Regulator

    Get PDF
    BACKGROUND: The MYC transcription factors are known to be involved in the biology of many human cancer types. But little is known about the Myc/microRNAs cooperation in the regulation of genes at the transcriptional and post-transcriptional level. METHODOLOGY/PRINCIPAL FINDINGS: Employing independent databases with experimentally validated data, we identified several mixed microRNA/Transcription Factor Feed-Forward Loops regulated by Myc and characterized completely by experimentally supported regulatory interactions, in human. We then studied the statistical and functional properties of these circuits and discussed in more detail a few interesting examples involving E2F1, PTEN, RB1 and VEGF. CONCLUSIONS/SIGNIFICANCE: We have assembled and characterized a catalogue of human mixed Transcription Factor/microRNA Feed-Forward Loops, having Myc as master regulator and completely defined by experimentally verified regulatory interactions

    Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice

    Get PDF
    Platelets play an essential role in hemostasis and atherothrombosis. Owing to their short storage time, there is constant demand for this life-saving blood component. In this study, we report that it is feasible to generate functional megakaryocytes and platelets from human embryonic stem cells (hESCs) on a large scale. Differential-interference contrast and electron microscopy analyses showed that ultrastructural and morphological features of hESC-derived platelets were indistinguishable from those of normal blood platelets. In functional assays, hESC-derived platelets responded to thrombin stimulation, formed microaggregates, and facilitated clot formation/retraction in vitro. Live cell microscopy demonstrated that hESC-platelets formed lamellipodia and filopodia in response to thrombin activation, and tethered to each other as observed in normal blood. Using real-time intravital imaging with high-speed video microscopy, we have also shown that hESC-derived platelets contribute to developing thrombi at sites of laser-induced vascular injury in mice, providing the first evidence for in vivo functionality of hESC-derived platelets. These results represent an important step toward generating an unlimited supply of platelets for transfusion. Since platelets contain no genetic material, they are ideal candidates for early clinical translation involving human pluripotent stem cells

    Measurement of the branching ratios of the Z0 into heavy quarks

    Full text link
    We measure the hadronic branching ratios of the Z0 boson into heavy quarks: Rb=Gamma(Z0->bb)/Gamma(Z0->hadrons) and Rc=Gamma(Z0->cc/Gamma(Z0->hadrons) using a multi-tag technique. The measurement was performed using about 400,000 hadronic Z0 events recorded in the SLD experiment at SLAC between 1996 and 1998. The small and stable SLC beam spot and the CCD-based vertex detector were used to reconstruct bottom and charm hadron decay vertices with high efficiency and purity, which enables us to measure most efficiencies from data. We obtain, Rb=0.21604 +- 0.00098(stat.) +- 0.00073(syst.) -+ 0.00012(Rc) and, Rc= 0.1744 +- 0.0031(stat.) +- 0.0020(syst.) -+ 0.0006(Rb)Comment: 37 pages, 8 figures, to be submitted to Phys. Rev. D version 2: changed title to ratios, used common D production fractions for Rb and Rc and corrected Zgamma interference. Identical to PRD submissio

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nΛ‰uds=20.21Β±0.10(stat.)Β±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nΛ‰c=21.28Β±0.46(stat.)βˆ’0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nΛ‰b=23.14Β±0.10(stat.)βˆ’0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Ξ”nΛ‰c=1.07Β±0.47(stat.)βˆ’0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Ξ”nΛ‰b=2.93Β±0.14(stat.)βˆ’0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Direct Measurements of A_b and A_c using Vertex/Kaon Charge Tags at SLD

    Get PDF
    Exploiting the manipulation of the SLC electron-beam polarization, we present precise direct measurements of the parity violation parameters A_c and A_b in the Z boson - c quark and Z boson - b quark coupling. Quark/antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLD CCD vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-98 sample of 400,000 Z decays, produced with an average beam polarization of 73.4%, we find A_c = 0.673 +/- 0.029 (stat.) +/- 0.023 (syst.) and A_b = 0.919 +/- 0.018 (stat.) +/- 0.017 (syst.).Comment: 11 pages, 2 figures, 2 tables, to be submitted to Physical Review Letters; version 2 reflects changes suggested by the refere

    A Search for Jet Handedness in Hadronic Z0Z^0 Decays

    Get PDF
    We have searched for signatures of polarization in hadronic jets from Z0→qqˉZ^0 \to q \bar{q} decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure

    Regulation of the let-7a-3 Promoter by NF-ΞΊB

    Get PDF
    Changes in microRNA expression have been linked to a wide array of pathological states. However, little is known about the regulation of microRNA expression. The let-7 microRNA is a tumor suppressor that inhibits cellular proliferation and promotes differentiation, and is frequently lost in tumors. We investigated the transcriptional regulation of two let-7 family members, let-7a-3 and let-7b, which form a microRNA cluster and are located 864 bp apart on chromosome 22q13.31. Previous reports present conflicting data on the role of the NF-ΞΊB transcription factor in regulating let-7. We cloned three fragments upstream of the let-7a-3/let-7b miRNA genomic region into a plasmid containing a luciferase reporter gene. Ectopic expression of subunits of NF-ΞΊB (p50 or p65/RelA) significantly increased luciferase activity in HeLa, 293, 293T and 3T3 cells, indicating that the let-7a-3/let-7b promoter is highly responsive to NF-ΞΊB. Mutation of a putative NF-ΞΊB binding site at bp βˆ’833 reduced basal promoter activity and decreased promoter activity in the presence of p50 or p65 overexpression. Mutation of a second putative binding site, at bp βˆ’947 also decreased promoter activity basally and in response to p65 induction, indicating that both sites contribute to NF-ΞΊB responsiveness. While the levels of the endogenous primary let-7a and let-7b transcript were induced in response to NF-ΞΊB overexpression in 293T cells, the levels of fully processed, mature let-7a and let-7b miRNAs did not increase. Instead, levels of Lin-28B, a protein that blocks let-7 maturation, were induced by NF-ΞΊB. Increased Lin-28B levels could contribute to the lack of an increase in mature let-7a and let-7b. Our results suggest that the final biological outcome of NF-ΞΊB activation on let-7 expression may vary depending upon the cellular context. We discuss our results in the context of NF-ΞΊB activity in repressing self-renewal and promoting differentiation

    The Cytosolic Protein G0S2 Maintains Quiescence in Hematopoietic Stem Cells

    Get PDF
    Bone marrow hematopoietic stem cells (HSCs) balance proliferation and differentiation by integrating complex transcriptional and post-translational mechanisms regulated by cell intrinsic and extrinsic factors. We found that transcripts of G0/G1 switch gene 2 (G0S2) are enriched in lineageβˆ’ Sca-1+ c-kit+ (LSK) CD150+ CD48βˆ’ CD41βˆ’ cells, a population highly enriched for quiescent HSCs, whereas G0S2 expression is suppressed in dividing LSK CD150+ CD48βˆ’ cells. Gain-of-function analyses using retroviral expression vectors in bone marrow cells showed that G0S2 localizes to the mitochondria, endoplasmic reticulum, and early endosomes in hematopoietic cells. Co-transplantation of bone marrow cells transduced with the control or G0S2 retrovirus led to increased chimerism of G0S2-overexpressing cells in femurs, although their contribution to the blood was reduced. This finding was correlated with increased quiescence in G0S2-overexpressing HSCs (LSK CD150+ CD48βˆ’) and progenitor cells (LSβˆ’K). Conversely, silencing of endogenous G0S2 expression in bone marrow cells increased blood chimerism upon transplantation and promoted HSC cell division, supporting an inhibitory role for G0S2 in HSC proliferation. A proteomic study revealed that the hydrophobic domain of G0S2 interacts with a domain of nucleolin that is rich in arginine-glycine-glycine repeats, which results in the retention of nucleolin in the cytosol. We showed that this cytosolic retention of nucleolin occurs in resting, but not proliferating, wild-type LSK CD150+ CD48βˆ’ cells. Collectively, we propose a novel model of HSC quiescence in which elevated G0S2 expression can sequester nucleolin in the cytosol, precluding its pro-proliferation functions in the nucleolus

    An Accessory to the β€˜Trinity’: SR-As Are Essential Pathogen Sensors of Extracellular dsRNA, Mediating Entry and Leading to Subsequent Type I IFN Responses

    Get PDF
    Extracellular RNA is becoming increasingly recognized as a signaling molecule. Virally derived double stranded (ds)RNA released into the extracellular space during virus induced cell lysis acts as a powerful inducer of classical type I interferon (IFN) responses; however, the receptor that mediates this response has not been identified. Class A scavenger receptors (SR-As) are likely candidates due to their cell surface expression and ability to bind nucleic acids. In this study, we investigated a possible role for SR-As in mediating type I IFN responses induced by extracellular dsRNA in fibroblasts, a predominant producer of IFNΞ². Fibroblasts were found to express functional SR-As, even SR-A species thought to be macrophage specific. SR-A specific competitive ligands significantly blocked extracellular dsRNA binding, entry and subsequent interferon stimulated gene (ISG) induction. Candidate SR-As were systematically investigated using RNAi and the most dramatic inhibition in responses was observed when all candidate SR-As were knocked down in unison. Partial inhibition of dsRNA induced antiviral responses was observed in vivo in SR-AI/II-/- mice compared with WT controls. The role of SR-As in mediating extracellular dsRNA entry and subsequent induced antiviral responses was observed in both murine and human fibroblasts. SR-As appear to function as β€˜carriers’, facilitating dsRNA entry and delivery to the established dsRNA sensing receptors, specifically TLR3, RIGI and MDA-5. Identifying SR-As as gatekeepers of the cell, mediating innate antiviral responses, represents a novel function for this receptor family and provides insight into how cells recognize danger signals associated with lytic virus infections. Furthermore, the implications of a cell surface receptor capable of recognizing extracellular RNA may exceed beyond viral immunity to mediating other important innate immune functions
    • …
    corecore